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A nonlinear growth equation recently proposed as a model for molecular beam epitaxy, dh/dt =
—V4V4h+/\22V2(Vh)2 +/\13V(Vh)3 + 7, where va4, A22, and ;3 are growth parameters and 7 is the
deposition white noise, has been studied by a direct integration method. The standard deviation
of the surface height for nonzero A;3 increases as t'/* in 141 dimensions, where ¢ is time, which is
consistent with the universality class of the Edwards- and Wilkinson-type [Proc. R. Soc. London
Ser. A 381, 17 (1982)] growth equation 8h/8t = v2V?h + 7, where v is the Edwards-Wilkinson
growth parameter. This disagrees with the previous results obtained by dimensional scaling analysis.
For A13 = 0, our results are in agreement with known analytic results. Possible implications of our

results for conserved growth are discussed.

PACS number(s): 05.40.+j, 05.70.Ln, 68.35.Fx, 61.50.Cj

Kinetic surface roughening associated with the
nonequilibrium growth of interfaces has been a subject
of great current interest [1]. Recently, much attention
has focused on the vacuum deposition growth of thin
films, where a beam of particles is normally incident on
a flat substrate, and the spatiotemporal random stochas-
tic noise inherently present in the impinging flux causes
the growing interface to roughen kinetically. Root mean
square fluctuation W in the dynamical height of the
growing surface (or, equivalently, W is the dynamical sur-
face roughness of the thin film) is often found to exhibit
generic scale invariance, obeying the dynamic scaling hy-
pothesis [2],

W (t) ~ L*f(L/t/*), (1)

where L is the lateral size of the substrate, t is the
growth time, and the correlation length £(t) ~ t/# de-
notes how lateral correlations spread over the substrate.
In Eq. (1), a and z are the roughening and dynam-
ical exponents, respectively, which define the univer-
sality class of the nonequilibrium growth process, and
f(y = L/t*#) is the scaling function with the asymp-
totic properties f(y < 1) ~ land f(y > 1) ~y <, so
that W(L > £(t)) ~ t? and W(L < &(t)) ~ L*, where
B = a/z is the growth exponent. Determining the critical
exponent « and 3 (as well as z = /) for various surface
growth mechanisms has been extensively pursued in the
recent literature using theory, experiment, and computer
simulation [1-18].

An important class [3, 4] of growth processes, molecu-
lar beam epitaxy (MBE) being a famous and well-studied
example, is conservative in nature (at least, in an ideal-
ized sense), meaning that the growth process conserves
the total mass and volume of the growing film (after de-
position), which immediately implies that evaporation
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and formation of overhangs and voids must be negligibly
small in these types of surface growth. Such conserved
growth processes obey a current conservation equation
for the dynamical height fluctuation h(x,t) given by

Oh

ot
where j is the particle current on the surface, V is the
divergence operator along the surface, and 7 is the non-
conserved stochastic white random noise associated with
the incident particle flux. [Note that the well-studied
Kardar-Parisi-Zhang (KPZ) equation [15] cannot be writ-
ten in the form of Eq. (2) and is not a conserved growth
equation.] Under the most general conditions consistent
with the symmetry of the problem (i.e., translational in-
variance in the growth direction, rotational and transla-
tional invariance in the surface plane), the leading-order
current conserving growth equation is [3]

Oh(x,t)
o

voV2h — vy VAh + Ap2 VE(Vh)?2
+A13V . (Vh)a + n(x, t), (3)

where vy, v4, A22, A1z are the coefficients of the vari-
ous linear (v, v4) and nonlinear (Az2, A13) terms in the
growth equation. When v, # 0, the other gradient terms
in the growth equation are higher orders, and, therefore,
irrelevant from a critical phenomena viewpoint. Thus, for
vy # 0, the critical exponents (a, 3, z) are entirely de-
termined by the linear v, V2h Laplacian term (the other
terms, if present, may very well be quantitatively sig-
nificant in producing complicated crossover behavior in
real finite size, finite time experiments), which dominates
the large distance (L — oo) and long time (¢ — o0)
asymptotic behavior. In the presence of finite v, there-
fore, at least for the asymptotic critical properties of the
model, one could drop all the other gradient terms in
Eq. (3), and the resulting simple linear growth equa-
tion (v # 0, v4 = Az2 = A3 = 0) was introduced by
Edwards and Wilkinson (EW) in the context of studying
sedimentation [5]. A more nontrivial and interesting case

1889 ©1995 The American Physical Society



1890 JIN MIN KIM AND S. DAS SARMA 51

is the situation with v, = 0 but v4, Az2, A1z # 0 in Eq.
(3). Such a fourth-order conserved growth equation (and
its various special cases such as Az2, A;3 = 0) has been
extensively studied in the last few years in the context of
developing a theoretical conceptual framework for MBE
growth [3,4,6-13,17]. In this paper we provide a direct
numerical solution of Eq. (3) with v = 0, finding the
seemingly surprising (and unanticipated) result that the
values of the critical exponents a and 8 (and z = a/f)
for the full fourth-order conserved growth equation (i.e.,
V4, A22,A13 # O;v2 = 0) are exactly the same as those
of the second-order EW equation. Thus, the full nonlin-
ear conserved MBE growth equation, i.e., Eq. (3) with
vy = 0, belongs to the EW universality class, which is
Eq. (3) with Vo 71-' 0 and Vg = Azz = /\13 = 0. The
implications of our result, which we believe to be exact,
are far reaching. In addition to explaining why a number
of surface diffusion driven discrete growth models [12,13]
seem to give EW exponents even though there is no ob-
vious explicit source for producing a vy # 0 term, our
results go a long way in providing an explanation for the
important technological issue of why MBE growth on a
flat singular substrate is capable of producing smooth
thin films of very small kinetic roughness (EW growth in
d=2+1 has a, 8 =0, implying smooth growth).

Before presenting our numerical results, we briefly dis-
cuss a context and a background for our model, namely,
the conserved current continuum growth equation de-
fined by Eq. (3), which was introduced for the surface
growth problem by Lai and Das Sarma [3], who how-
ever, mostly concentrated, in their work, on the situa-
tion v = A;3 = 0, a scenario also independently consid-
ered by Villain [4]. The case vy = A2z = A13 = 0, i.e.,
the fourth-order linear (v4 # 0) growth equation, which
is also the Mullins-Herring equilibrium surface diffusion
equation, was independently invoked by Das Sarma and
Tamborenea [7] and Wolf and Villain [11] in the context
of kinetic surface roughening. Combining equations (2)
and (3), the most general form for the nonequilibrium
surface current j(x,t) in the context of kinetic growth
can be written in the leading order as

j(x,t) = —-(Vh)[llz + )\lg(Vh)z + .- ]
+V[vaVZh — A2 (VA2 +--1]. (4)

These two terms in the surface current, namely, a
nonequilibrium gradient term proportional to the slope
Vh, and a term proportional to Vyu,., where ppe ~
v4V2h — A22(Vh)? is a “nonequilibrium” chemical po-
tential, have been separately justified in the context of
MBE growth by Krug et al. [13] and Villain [4], respec-
tively. Our approach in this paper, following the original
work of Lai and Das Sarma [3], is somewhat formal in
that we insist on keeping all the symmetry allowed con-
serving terms up to fourth order in the growth equation,
which gives us Eq. (3). We point out that while v5 # 0
is the most relevant term in Eq. (3), the A;3 nonlinear
term is the most relevant term in the absence of v, as a
simple power counting would show [3].

In the rest of this paper, we put v, = 0 in Eq. (3) to get
the fourth-order conserved continuum growth equation:

w = —"I/4V4h + AszZ(Vh)z
FA13V - (VR)? + n(x, t). (5)

We consider in this paper Eq. (5) as well as two of its
limiting forms with A;3 = 0 and with Ay; = 0. Our
reasons for considering the v, = 0 situation are several:
(i) As emphasized before, the v; # 0 situation gives us
the EW equation, which being linear is trivially solved
to produce z = 2, a = (3 — d)/2, where d denotes the to-
tal system dimensionality (substrate dimension plus the
growth direction). We emphasize that in the presence of
nonzero v, all other terms in Eq. (3) are irrelevant and
do not affect growth criticality. In this situation (i.e.,
for v, # 0) our results may help to clarify the crossover
behavior. (ii) More importantly, for MBE growth with-
out desorption on a flat substrate the v, term has been
argued on physical grounds to be vanishingly small [3,
4,13] so that Eq. (5) may actually be the leading-order
conserved current continuum growth equation in many
experimentally relevant situations [10]. This, in fact, is
our principal motivation for studying Eq. (5) in detail.
Before presenting our numerical results, we mention that
the linear fourth-order equation [i.e., Eq. (5) with v4 # 0
but Ay; = A1z = 0] is also trivially solved to give z = 4
and a = (5 — d)/2.

Now we present our numerical results, which are based
on a direct integration of Eq. (5) as well as the special
limiting cases of A;3 = 0 and A2 = 0. Our simula-
tions are performed in d = 1 + 1 starting from a flat
substrate and using periodic boundary conditions along
the surface. The time ¢ corresponds to the number of
Monte Carlo steps in our integration. We have tested
our algorithm by first integrating the linear fourth-order
equation (A2 = A3 = 0), exactly obtaining the known
result = 3/8 in d = 1+ 1 dimensions. We carry out our
integration on a discrete grid using a simple Euler inte-
gration method [14]. The noise 7 is taken to be a uniform
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FIG. 1. Surface width W as a function of time in log-

log plot of Eq. (5) for various values of A13 and A2 (with
v4 = 1). The curves are from the top to the bottom: A13 = C
and Azz =1 (,3 ~ 034), A13 =1 and /\22 =0 (ﬂ ~ 025),
A1z =1 and Az2 = 1 (8 =~ 0.25), where —0.1 is added in In W
to avoid data overlap, and the bottom data is for A;3 = 10
and A2z = 0 (8 =~ 0.25) with uniform noise distribution and
At = 0.01.
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white noise or a Gaussian white noise with no difference
in the results. We have tried different integration time
steps (e.g., At = 0.01, 0.001), obtaining the same critical
exponents.

We show in Fig. 1 our calculated dynamical surface
width W (= root mean square deviation in the surface
height fluctuations) as a function of time t for L = 5x 104,
averaging over 50 independent runs. We show results for
four different possibilities (from top to bottom in Fig.
1) in Eq. (5): A1z = 0, A2z = 1; A3 = 1, Azz = 0;
J

)\13 - /\22 = 1; and, ﬁnally, /\13 = 10, Azz = 0. All
the curves use vy, = 1. In Fig. 2, we show the satu-
rated surface width W(L,t — o) as a function of the
substrate size L for the limiting cases A1j3 = 0, Azz =1
and A3 = 1, X232 = 0. We have carried out calculations
for other values of the parameters v4, A13, Az2 obtaining
very consistent results similar to the ones shown in Figs.
1 and 2. From these log-log plots, we conclude that the
critical exponents a, 3, and z in d = 1 + 1 dimensions
for the various nonlinearities in Eq. (5) are given by

Vg, A2z #0; A3 =0:0=0.34 £0.01;a = 1.02 £ 0.03; z = 3.0;
Aoz = 0; va, Az #0:8 = 0.25+0.01; & = 0.50 & 0.02; 2z = 2.0;

Vg, Agz,Al;; # 0 2,8 = 0.26 = 001,
Vg, /\22 = 0, Alg ié 0 1,8 = 0.24 £+ 0.01.

In Fig. 3, we show some typical saturated surface growth
morphologies for these continuum growth models. We
first discuss the A22 VZ(V k)2 nonlinearity [which we note
is the conserved KPZ nonlinearity [15,16]], which has ear-
lier been analytically studied using the dynamical renor-
malization group (DRG) technique, yielding [3]

z2=(7+4d)/3; a=(5-4d)/3. (7

Our numerical results for A2z # 0, A;3 = 0 agree with
these DRG predictions, which have been argued to be ex-
act [17] even though the original calculation was a single
loop calculation [3]. Our numerical results showing the
exactness of the DRG exponents for A;3 = 0 are signifi-
cant because the issue has been somewhat controversial
(8]

While our results for the Azz nonlinearity are reassur-
ing in the sense that they verify the exactness of exist-
ing perturbative DRG analytic results, our results for
A13 # 0 are surprising to say the least because our cal-
culated exponents agree with the known EW exponents
z=2, a=0.25ind =1+ 1, leading to the conclusion
that the V - (Vh)3 nonlinearity, by itself, is sufficient to
generate the linear EW term V2h upon renormalization
(even though v, = 0 to start with), which then domi-
nates the critical properties of the system, driving the
model into the EW universality class. Since V - (Vh)3
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FIG. 2. Saturation surface width W as a function of sub-
strate size L in log-log plot for (triangles) A;3 = 0 and A2z =1
(a = 1.0), and (squares) A13 = 1 and A2z = 0 (a =~ 0.50), both
with v2 = 0 and v4 = 1.
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FIG. 3. Typical surface configurations in the saturation
regime for various values of A13 and A2z (2 =0 and vs = 1):
(a) A13 = /\22 = 0; (b) /\13 = 0 and /\22 = 1; and (C) /\13 =1
and A2z = 0. In curve (a) the curvature remains small and the
height configuration is smooth. In (b) A — —h symmetry
is broken so there is a sharp peak in contrast to the smooth
valley. In (c) the surface width remains small.
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nonlinearity is the most relevant term in Eq. (5), we
conclude that both the conserved growth equations, Eqgs.
(3) and (5), belong to EW universality, independent of
whether v, is finite or zero. In discussing this result, we
note that dimensional scaling analysis gives the following
results for the V - (Vh)3 nonlinearity [3]:

=0 et ®)
leading to « =3/4 and 8 =3/10in d =1+ 1. We men-
tion that an analysis of higher-order diagrams for the
V2(Vh)? nonlinearity explicitly shows that vertex cor-
rections vanish and the interaction remains unrenormal-
ized in contrast to the V - (Vh)3 nonlinearity, where the
interaction term ;3 is clearly affected by vertex correc-
tions. We emphasize that such a failure of a dimensional
scaling analysis is quite uncommon — for example, a scal-
ing analysis of the VZ(V k)2 nonlinearity yields the cor-
rect critical exponents in contrast to our finding for the
V - (Vh)3 nonlinearity. Because Eq. (5) contains all pos-
sible leading-order symmetry-allowed conserved growth
terms (except for the EW term v, V2h), we have to con-
clude that MBE growth, in the absence of void formation,
may belong (asymptotically) to EW universality either
because of the explicit presence of the v3 term [as in Eq.
(3)] or because of the renormalization of the A3 term [as
in Eq. (5)], except for the extremely unlikely scenario
that both v = A\;3 = 0, whence we have the universality
given by Eq. (7).

While we do not have a formal theoretical proof for
the renormalization of the A3V - (Vh)3 term into the
V2h term, we have a persuasive argument based on the
Hamiltonian Hyz ~ 232 [ d41z(Vh)%, which produces
the A13V - (Vh)3 term in the continuum growth equa-
tion via the Langevin equation approach. In the equilib-
rium situation, Hys will obviously generate [19] a lower-
order (Vh)? term upon renormalization, leading to the
EW V2h term in the growth equation. The situation
is formally similar to the equilibrium restricted solid-
on-solid model [18], which is well described by the con-
tinuum Hamiltonian Hrsos ~ fdd_la:(Vh)” with very

large n, which, on renormalization, however, leads to the
EW equation corresponding to n = 2. The presence of
nonconserved noise in Eq. (5) should not pose a for-
mal problem to this argument because the noise remains
exactly unrenormalized in the conserved current model,
thereby not affecting this argument. [The fact that the
noise remains unrenormalized in the conserved growth
model is supported by the agreement between our nu-
merical exponents and DRG exponents for the VZ(Vh)?2
nonlinearity.] This argument for the renormalization of
the A13V - (Vh)3 nonlinearity into a v, V2h linear term
[20] is quite subtle, however because one is dealing with a
nonequilibrium situation — our direct integration of Eq.
(5) shows that the argument is valid in the nonequilib-
rium condition. We emphasize that a complete failure of
the dimensional scaling analysis as we find here for the
V-(Vh)3 nonlinearity is an extremely unusual occurrence
in surface growth phenomena. In this context, it is worth-
while to emphasize that both the EW V2A term and the
nonlinear A3V - (V)3 term in the growth equation can
be derived from the general surface tension Hamiltonian
H ~ [d*'z,/1+ (Vh)? as the first two growth terms
in a series expansion of the square root within a dynam-
ical Langevin equation approach [17]. We surmise that
the universality class of all the higher order terms in this
expansion is EW as well, for the same reason. Since EW
universality produces very smooth growth (8 = a = 0)
in d = 2 4+ 1, we speculate that conserved MBE growth
is generically smooth independent of whether v, = 0 or
not (as long as A;3 # 0).

Note added in proof. After our work was submitted
for publication, Das Sarma and Kotlyar [21] carried out
an analytical DRG calculation, obtaining agreement with
both of our numerical conclusions, showing (i) the gener-
ation of the EW V2h term upon renormalization of the
V - (Vh)? term in Eq. (3), and (ii) the exactness of the
Lai-Das Sarma result [3] for the V2 (Vh)2 term to all
loop orders.
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